10 each, selected games, valid 7 days) and will have 30 days to release a bonus equivalent to the initial deposit up to £100 (35x wagering, selected games, valid 30 days) Certain deposit types are excluded.
Looking for the best casino sites is a challenge for gamblers in the UK.
all players play against the house / dealer with face up cards at the center of the table.
The Deck and the Deal
legal online betting sites in usa This makes quite a difference in the long run, and it basically means that you stand to win more cash if your bet comes through.
One of the common traits at the best betting sites involves a huge number of markets for football betting.
“近一年总是饿,吃得多,还瘦了。”武汉市协和医院麻醉医生凌肯在电脑上敲下这句话。现在他是一名患者,专门测试一位“医生”的水平。
“请问您有没有既往病史,例如糖尿病、甲状腺疾病等?家族中有没有类似的病例?您有没有药物过敏史或手术史?”屏幕另一端的“医生”回复他。
和凌肯对话的不是真人,而是一款名为MedGPT的大语言模型问诊AI,由互联网医疗公司医联开发。自ChatGPT发布以来,国内外企业都先后投入到医疗大语言模型研发的浪潮中。腾讯、百度等大厂,华为、讯飞、商汤等科技公司,以及医联、春雨医生等互联网医疗企业,陆续公布在垂直类大模型方面的布局。
7月,谷歌公司的医疗问诊AI Med-PalM的研究团队在《自然》杂志发布了研究成果,经临床医生评估,Med-PalM的长篇回答中有92.6%与科学共识一致。“AI医生”的优异表现也引发更多讨论与担忧:AI达到替代医生的水平了吗?怎样保证AI的准确性?如果AI诊断出问题,谁来为错误负责?
凌肯和MedGPT的对话还在继续。问过既往病史、家族史、过敏史后,“医生”又询问了体重减轻范围、其他症状表现、睡眠质量、饮食习惯、血压等信息,最后开出一份检查方案,要求凌肯检查血糖、甲状腺功能。凌肯将准备好的检查结果输入,十几秒后,MedGPT给出自己的诊断:甲状腺功能亢进症——答案是正确的。
图/视觉中国
面对非医疗信息“会越聊越歪”
医生们对AI早已不陌生。2017年,国内首批医疗AI产品以科研合作的方式进入医院,2018年起,这些产品陆续获得国家药监局审批。截至今年5月底,国家药监局已批准59个医疗AI辅诊软件上市。上海长征医院放射诊断科主任刘士远曾表示,发展最为成熟的是肺结节和冠脉影像辅诊两类,骨科、脑科等AI辅诊软件还未被常规使用。
以心脏冠状动脉CT血管造影,即冠脉CTA为例,一名患者做一次检查产生上百张图片,医生需要在其中找出血管是否出现狭窄、斑块。AI能将每例图像的处理时间从45分钟缩短到5分钟。
在引入临床决策支持系统(以下简称CDSS)的医院里,AI还能帮医护作临床决策。CDSS是一种综合分析医学知识和患者信息,为医务人员临床诊疗提供多种帮助的计算机辅助信息系统。2020年4至5月期间,国家卫健委医院管理研究所对全国31个省份的1013所医疗机构调研,其中19.6%的医院有CDSS。
但这些产品并未对提升医生的诊断水平有太多帮助。多位受访医生、规培医师告诉《中国新闻周刊》,由于科室收治病人种类相对固定,处理流程成熟,基本不会使用CDSS作参考,遇到不确定的问题会直接咨询上级医生或科室讨论。并且,现在的CDSS还很“死板”,在自动审查医嘱时,会对超说明书用药“纠错”。“但往往我们会坚持用药。”一名三甲医院规培医师说。
国家卫健委卫生发展研究中心副主任游茂7月在全国医疗器械安全宣传周暨人工智能标准宣贯会上表示,当前AI医疗领域的困境之一,在于技术发展同质化严重,数据、算法的优势尚未得到体现。中国AI医疗器械95%的研究或产出都在医学影像类,在“医疗机器人”“知识库”“自然语言处理”等领域研究相对不足,关于“决策规则”的研究几近空白。
“其实不是研究空白,是落地成产品有很多限制。” 一位研究医疗领域自然语言处理十年的高校学者告诉《中国新闻周刊》。她表示, X光机、CT设备、磁共振仪等影像类医疗器械是医疗机构的硬需求,AI辅诊软件可搭载在影像设备上,相比处理文本数据的软件更易进入医疗机构。另外,影像数据较诊疗文本数据更独立,更易脱敏,且公开的图像数据库更多,而公开的高质量诊疗文本数据十分有限,这使得在“自然语言处理”等领域研究不足。
ChatGPT的出现,让企业看到大语言模型给AI问诊带来的新机会。
医联创始人兼CEO王仕锐表示,医联此前也开发了包括口腔影像识别、精神科DTx数字疗法等医疗AI类产品,但无法实现AI全流程诊疗。“当时遇到一个无法逾越的鸿沟——自然语义的识别。”王仕锐说,大语言模型推出前,虽然知识图谱等技术也能实现人机对话,但对话机器人的推理、上下文理解能力还不足,并难以做到普通人语言与医学术语间的语义转换。
MedGPT从今年1月开始研发,5月推出,参数达千亿级别,定位是突破“人问机答”模式,能像真人医生一样主动多轮询问患者症状等信息,推断患者可能患病的类型,并开具检验检查单。患者输入检查数据后,AI可继续读取数据,并给出治疗方案。
目前,MedGPT还未对公众开放。参与内测的凌肯用了一小时和MedGPT互动,抛出的问题包括麻醉是否会影响患者智商,甲状腺功能亢进患者的完整诊断等。凌肯告诉《中国新闻周刊》,MedGPT问得很详细,回复也较真人医生更加亲和,“但远远没到取代医生的地步”。
他解释道,体验过程中最突出的问题是,MedGPT不能很好地接收非医疗信息。若模拟真实看诊过程中患者向医生倾诉家庭情况等非医疗信息, MedGPT还做不到提炼其中的核心信息,“会越聊越歪”。王仕锐表示,患者的语言可以不够简洁,但只有回答AI提出的医疗问题,AI才能给出准确回应。
相比之下,春雨医生布局更谨慎。5月,春雨医生将大模型在线问诊产品春雨慧问开放免费使用。不同于MedGPT开检查单、给诊断,慧问在较少轮次问询后会告知患者症状可能对应的多种疾病及对策,之后,以“如果您情况比较严重,建议您及时就医,寻求专业医生的帮助”为结束语。
“就像自动驾驶,很难一上来就做到完全自动驾驶,但我们是不是可以有自动停车、辅助倒车功能?这些功能本身也很好用,研发难度会低很多,对使用安全性的要求也会低很多。”对于暂时不做精准诊断和治疗方案的原因,春雨CTO曾柏毅解释说。
曾柏毅坦言,慧问更像是春雨在探索大模型运用场景过程中的一个实验品,定位并不明确,“我们也想看市场里面用户到底想要什么,愿意怎样使用AI问诊产品,会对AI提什么样的问题。”后台数据显示,从5月上线到7月底,共有5000多人使用慧问,其中5%左右在使用过程中转向了向真人医生求助。曾柏毅称,春雨在开发询问过程更加详细的AI问诊产品,计划用于真人医生问诊场景。
医疗大语言模型的另一落地模式是直接与医院合作,和线下诊疗过程相结合。商汤智能产业研究院院长田丰对《中国新闻周刊》介绍,商汤与郑州大学第一附属医院、上海交通大学医学院附属新华医院合作,医疗大语言模型“大医”的参数从十亿到千亿不等,已使用在一些医院的随访过程中。田丰表示,基于大模型的随访系统比传统的AI电话随访机器人,有更强理解力、更人性化的交互和更全面的信息收集能力。
7月6日,上海世博展览馆,2023世界人工智能大会上的中山眼科中心AI+医疗展区。图/视觉中国
最难获取的是真实的问诊数据
如何让问诊AI少出错甚至不出错,是所有研发团队要解决的首要难题。
大语言模型的本质是通过统计分析预测对话中可能的下一个词,存在生成不准确或误导信息的可能性,但在严格要求准确性的医疗领域,AI的错误也意味着患者将承受风险。
2021年,密歇根大学医学院研究人员发现,由美国电子健康记录公司Epic Systems 研发的败血症AI预警系统没能识别出67%的败血症住院患者,只识别出7%被医生遗漏的败血症患者。Epic公司称,漏检与系统阈值有关,需要设置一个平衡患者假阴性与假阳性的警报阈值。
高质量数据是保证准确性的基础。医疗大语言模型会被额外“投喂”医学书籍、临床诊疗指南、医学论文等专业知识。其中最重要、也最难获取的是优秀的真实问诊数据,既包括顶级专家对该疾病的诊断记录,也包括患者身体特征、检测数据、家族史、环境信息等多维度的信息,同时,还需要覆盖各年龄层、性别、地域的患者。
多位受访专家和从业者表示,已有问诊数据尚不能完全满足研发需求。国家远程医疗与互联网医学中心医学人工智能专家委员会主任委员、呼吸病学专家刘国梁告诉《中国新闻周刊》,即使能收集到目前医院的临床数据,其质量也未达到能够用于AI训练的水平,需要专门去生产符合AI训练标准的临床问诊数据。
更多的临床经验可能未被记录成文本。“特别是疑难病领域,很多知识是在医生脑子里,甚至医院里面可能也没有,都是口口相传。”曾柏毅说。
王仕锐介绍说,医联共使用三类真实问诊数据,包括公开数据、医联独有的问诊数据,以及通过搭建专门的数据平台收集的数据。对于第三类数据,医联从协会、医院、专家处采集,“这一过程好像将石油从地底勘察并最终加工运输到油箱,中间有漫长且复杂的工序。”
前述高校学者强调,数据质量对研究非常重要,但前提是要保障数据安全。对数据的采集、筛选必须建立在保护数据安全的基础上,个人信息脱敏,保护患者隐私是首要步骤。医联、春雨医生和商汤均表示对数据进行了脱敏处理,并在使用前取得了患者同意。
除了数据,模型设计也能提升医疗AI的准确率。田丰说,商汤成立了一支近百人的医学专家团队,参与数据标注、模型训练及测试,保证AI能够完成多轮问诊、不回答患者非医疗问题等。商汤还训练了一套“智能评判系统”,对大语言模型输出的答案进行评判,让模型输出更符合临床专业要求以及人类价值观的回答。
不过,再怎样调试医疗AI,其本身存在一定局限性。刘国梁认为AI与真人医生最根本的差异在于,二者在诊疗过程中的原则可能不相同。目前尚不能确定AI在诊断时,是以患者生命长度为重要衡量,还是以更好的生命质量为先,抑或根本与人类福祉无关。一名优秀的医生能够在关注患者治疗方案的同时,照顾其情绪、花费、家庭情况,目前医疗AI还难以做到。
另外,医疗AI主要依靠患者的问诊数据,缺少查体过程。一方面,躯体类疾病可能会影响患者的感觉,使其表述出来的感受与病情严重程度不相符;另一方面,不同疾病也有相似症状,只靠询问很难得到准确结果。
北京大学人民医院骨科主任医师薛峰告诉《中国新闻周刊》,很多医学问题尚未有明确答案,许多医生也是依靠经验,达不到100%的准确率,更何况依靠人类经验来进行推理的AI,“现阶段让它来看病只是作为一种咨询、一种辅助,最后判断还是要交给真人医生,AI还需持续学习和调优”。
多位受访从业者、专家均表示,AI并不可以、也不可能取代医生,不应有处方权。一旦涉及诊断、开处方,必须有真人医生参与其中,否则就会面对“AI看病看错了,到底是AI负责,还是AI开发公司负责,抑或是购入AI产品的医院或医生负责”的难题。当AI与医生意见不符合,比如患者希望按照AI建议做非常昂贵,但医保不报销的检查,医生觉得没有必要时,也可能出现伦理问题。
据《华尔街日报》今年6月报道,在加州大学戴维斯分校医学中心肿瘤科,护士梅丽莎·毕比和癌症患者打了15年交道。当AI预警系统提示她的一名患者有败血症时,她确信警报是错的——因为AI不知道,白血病患者也会表现出类似败血症的症状。
按照医院规定,毕比可以在获得医生批准后推翻AI的诊断,但如果她错了,她将面临处分。最后,她只好按照AI的诊断给病人抽血检查,即使这可能会让病人进一步感染,也会让其治疗费用更高。
未来临床实践将怎样保证医生参与监管AI?薛峰表示有两种设想:一是仍然由医生负责开处方,AI只负责前期询问及信息收集;二是由AI开处方,但医生需要审核治疗方案,至少保证药物无害并签字,若出现问题,仍由签字医生负责。
全新的三方关系
6月末,医联在成都举行了一场“双盲实验”,让MedGPT与10位四川华西医院的主治医生一起对120余位患者进行诊断,来评测AI与真人医生的一致性,最后由多位专家对91份有效病例审核。刘国梁与薛峰都参与了此次审核,二人表示MedGPT的效果比预期稍高,没有出现太大错误,但也存在一些问题。
薛峰表示,MedGPT在面对复杂病情时的问诊逻辑还很简单。他解释说,每一种疾病往往会有一组症状,单一症状对应的疾病可能有几十种、上百种,而患者在表达主诉时往往只会说到其中一两个最严重的症状。做排除诊断时,真人医生能够不断就可能的关联症状进行提问,最后根据患者回答作甄别,而MedGPT在关联不同症状的全面性上还有不足。
王仕锐称,医联的下一步除了提高准确率,还会整合多模态能力,弥补不能进行查体的缺陷。比如给MedGPT“装眼睛”,以视频方式做运动轨迹识别,解决骨科查体难题。谷歌在7月末推出新的通用生物医疗AI模型Med-PalM M,除了回答医疗问题,Med-PalM M还可检查X光图像,甚至扫描 DNA 序列是否存在突变。
摆在问诊AI面前的问题,还有监管。此前,国家药监局器审中心发布的《人工智能医疗器械注册审查指导原则(征求意见稿)》等文件规定,基于医疗器械数据、使用人工智能技术实现其预期用途的医疗器械,需要经药监局审批上市。医疗器械数据包含图像数据、生理参数、体外诊断数据等,电子病历、医学检查报告的结果文本等属于非医疗器械数据。
以MedGPT为例,虽然主要依靠患者主诉信息,但是也会给患者开检查报告,基于血糖、血压等数据来推荐治疗方案。王仕锐表示,在当下的监管体系中难以界定其是否属于医疗器械,对此类新型产品,相关部门可能会有新的监管框架。
7月13日,国家网信办联合六部门公布《生成式人工智能服务管理暂行办法》(下称《办法》)。《办法》自2023年8月15日起施行,其中提到鼓励生成式AI创新发展,并要求“具有舆论属性或者社会动员能力”的产品,向公众提供服务前,需开展安全评估,并履行算法备案。基于生成式AI的问诊产品是否要申请安全评估和算法备案,多家企业说法不一。前述学者表示,该《办法》为医疗AI设定了合法合规的框架,但针对医疗AI的监管如何实施,标准如何制定,《办法》还未明确。
“标准化最关键的、最本质的目的就是建立最佳秩序。”该学者说,为创新产品制定标准是一个缓慢的过程,到底怎么定、定多高需要不断摸索。多位受访从业者都表示从研发到进入临床,医疗大语言模型还有很长一段路走,但也都认可AI一定是未来医疗格局的一分子。
AI可以使医疗模式转向社区化、家庭医生化。薛峰表示,门诊中90%以上都是常见病,可以通过家庭医生来解决,但目前医疗资源并不均衡,三甲医院与基层医院医疗水平相差过大,导致患者对社区医院不信任。
薛峰说,若AI成为面向患者的家庭医生,患者通过预先咨询AI,可为医疗机构减轻负担,同时也增加对病情的初步了解,找准看病方向。“这样的医疗模式有助于医疗规范化,减少过度医疗或医疗欺骗。”薛峰说。
在面向医生的场景中,AI的作用可以更多。多位受访专家表示,AI可以成为助手,帮助医生学习疑难杂症的前沿治疗方案,减少误诊率,亦可参与医学培训,帮助年轻医生及医学能力不足的基层医生成长。美国波士顿的一家医疗机构已开始使用ChatGPT来培训规培生。“因为医学训练有时候不存在对错,而是锻炼医生的思维方式、结果解读、沟通等,可以(用AI)单独去训练这些能力。”刘国梁说。
更直接的可能性是AI能使医生从文书的工作中获得解放。浙江某三甲医院的一名规培医师告诉《中国新闻周刊》,接收新病人时会花费不少时间写首程诊断。今年2月开始,他尝试让ChatGPT帮他写鉴别诊断,“因为有时候诊断都很明确了,还要绞尽脑汁去想鉴别诊断也挺烦。我会直接把问题抛给ChatGPT,告诉它我想写某两种疾病的简洁诊断,它会给我列出好几点。”
未来医疗到底会怎样,微软全球资深副总裁彼得·李与两位合著者在《超越想象的GPT医疗》中描绘了一种新的医患关系:传统医学中医生与患者是一对双向关系,但现在我们应该转向一种全新的三方关系,而AI是这个三角关系的第三支柱。
发于2023.8.21总第1105期《中国新闻周刊》杂志
杂志标题:大模型进入医疗领域:AI能替代医生吗?
作者:董慧
betting games onlineonline baccarat freeonline usa casinos
声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。